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The problem of the propagation of a small initial pulse in non- 
relativistic magnetohydrodynamics with finite conductivity was solved 
completely by G. S. Golitsyn [1]. The solution proved to be relative- 
iy easy since the displacement current may be ignored in the Maxwell 
equations (the displacement current, as will be seen below, is of the 
order 1/c ~ in comparison with the remaining terms). The fact that the 
displacement current is small makes it possible to express the electric 
field in terms of the magnetic field and hence reduce the number of 
necessary equations to a minimum. Here, the Alfv~n arid magneto- 
sonic waves are described by two independent systems of equations 
which indicate that they propagate without interaction even at finite 
conductivity. 

In reIativistic magnetohydmdynamics, the displacement current 
is of the same order as the remaining terms and therefore cannot be 
omitted. To solve the problem it is necessary to consider a complete 
system of relativistic magnetohydrodynamic equations and Maxwell 
equatiom, in which both the electric and magnetic fields appear si- 
multaneously. In the general relativistic case, the Alfv~n and mag- 
netosonic waves are not separate. 

Let us consider the Maxwell equations with relativistic current 
on the right side [2-4]: 
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Here it is assumed that there are no free charges, and that s = 
= # = 1 .  

The Maxwell equations in the form (1) are not suitable for lin- 
earizing the magnetohydrodynamie equations. Therefore, we rewrite 
equations (1) in a form similar to that of the equations of skin-effect 
theory in electrodynamics. Applying the operation to both parts of the 
first and third equations in system (1), we can finally write the neces- 
sary system of equations in the form 
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Here Tik is the eleetromagnetie field tensor, ~m is the mag- 
netic viscosity of the medium, w is the thermal function for one par- 
ticle, and n is the number of particles per unit volume. 

System (2) together with the equation of state forms a closed 
system. Note that not all the equations in system (2) are independent, 

since the components rot it and rot E are linked by the relations div 
rot H--- 0 and div rot E = O. 

For the !inearized problem in the ca~e of a still medium (v a = 
= 0), system (2) takes the form 
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Here 
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(since joule losses can be ignored for smelt perturbations), e is the in- 
ternal energy density per unit volume, and Y0 is the adiabatic expo- 
nent. 

We shall represent small perturbations of velocity, density, and 
electric and magnetic field components in the form of a super-position 
of traveling waves 

c o  
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where 6n~ 5vO(k), etc. are given at the initial time. Then from 
from the third equation of system (3) we have 

h~~ = O, (5) 

Therefore, we can choose the coordinate system in which the 
magnetic field perturbation components and the wave vector have the 
form h$~ hy', hz~ ks = (k, 0, 0). 

In the chosen System, proceeding from the fourth of equations 
(3), we have 

to  r 
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The e~ component remains arbitrary. Substituting (4) rata (3) 
and allowing for conditions (5) and (6), we obtain the homogeneous 
system 
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for the Fourier amplitudes 6gx*. 6,y* and 6Vz'. 
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The amplitudes ex ~ hy*, h z" are related to 6Vx*, 6Vy', 6u z" by 
the formulas 

1 
ex~ -- c [f2 + T (1 -- ~)] [Ex6vx~ + (Eu - -  f~[Iz) 6~"!' ~ + (Ez + f~/tv) ~ z~  

H~6vx ~ - -  Hx6tb ~ HzSvx ~ - -  Hx6vz ~ 

The following notation has been introduced (7) and (8): 

co ~ ~ _ ~_ �9 v.,k 
a ~ = ~ ,  l V = n w ,  -- kc ' ~ ' = i 3 = i - c - .  

Here f~ is the dimensionless frequency and t5 the dimensionless 
magnet ic  viscosity. The requirement that there exist a nontrivial so- 
lution to system (7) leads to a tenth-degree dispersion equation in fl: 

a~.Oj0 + a~fi~ + . . .  + a~o-q + ax~ = 0.  (9) 

Here, the coefficients a I, a~ ..... all  are functions of the elect_ 
tric and magnetic  field strengths and of a z and ~*. For infinite con- 
ductivity, as might  be expected, the dispersion equation (9) reduces to 
the two expressions* 
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These equations describe Alfv~n and magnetosonic waves. For 
<< 1, these waves are approximately separate and the phase veloci-  

ties have the form: 
for AlfvSn waves 

(t + aaH~ / 4n W )  Hxa / 4~W~ + 

for magnetosonic waves 

n =  •  +a~(~ 
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Consider the case of low conductivity (t~ >> 1). The solution of 
dispersion equation (9) is sought in the form 

t 

where f~o and f21 satisfy the equations 

f20 {.o-06 - -  (a~0 +2)  f~04 + (2a~O + l) .o.0~ - -  a~0} ~ 0, (13) 

Ex~ boQo TM + bxf~o s + b~Qo ~ @ b3f~o 4 + baf~o a -[- b5 �9 (14) 
0 : t -/~g ' "~ : c0f~0 ~ ~- cx~o ~ + c~f~o 2 + ca 

*Equations (10) are a particular case of the more  general dis- 

persion equations for a moving medium [3]. 

Here b0 . . . . .  bh, co . . . . .  c 5 are functions of E. H, a z. For one of 
the roots of equation (13) (n 0 = 0) we have the wave 

~, 4 ~ v v  

which rapidly attenuates with t ime.  The remaining six roots are found 
from the solution of the equation 

s -I- 3PX' + 2q = 0. (15) 

Here 

f 2 o = •  gX,  X = Z ' + l / s ( a ~ O + 2 ) ,  (1ha) 

p = - -  1/o (1 - -  an0) ~, q = - -  x/~r {4a~68 + ihaa00" + 1~ -'t- 23) �9 

Waves described by this equation will also have the form 

i 
n = e - - y  Q, (15b) 

where P and Q depend upon the value of the roots of equation (15) 
and the magnitudes of the electric and magnet ic  field strengths. From 
these waves we must select only those that attenuate with t ime.  For 
the l imit  case under consideration B >> 1, separation of the waves into 
Alfvgn and magnetosonlc waves makes no sense. 

It is of interest to consider the trivial solution to system (7) when 
initially 6Ux'= 6Uy" = 6Uz* = 0. For the electric and magnetic  field 
perturbations to be finite, it is necessarY to set 

+ ~' (i -- f~) = 0. (16) 

It is clear that (16) describes the ordinary skin absorption of 

electromagnetic waves with frequency 

~=--il~ for ~ t ,  n=• for ~>~i.  

If we set B -~" ~ in equation (16), we have ~2 -~- • which cor- 

responds to electromagnetic wave propagation in a dielectric with 

~ : p : l .  

In the general case e and ~ are neither equal to unity nor con- 
stant with time, and the wave propagation velocity must be given by 

~ / k = o / r  
In conclusion, the author thanks K. P. Stanyukovich for his in- 

terest in the work. 
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