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The problem of the propagation of a small initial pulse in non-
relativistic magnetchydrodynamics with finite conductivity was solved
completely by G. S. Golitsyn [1]. The solution proved to be relative-
ly easy since the displacement current may be ignored in the Maxwell
equations (the displacement current, as will be seen below, is of the
order 1/c? in comparison with the remaining terms). The fact that the
displacement current is small makes it possible to express the electric
field in terms of the magnetic field and hence reduce the number of
necessary equations to a minimum. Here, the Alfvén and magneto-
sonic waves are described by two independent systems of equations
which indicate that they propagate without interaction even at finite
conductivity.

In relativistic magnetohydrodynamics, the displacement current
is of the same order as the remaining terms and therefore cannot be
omitted. To solve the problem it is necessary to consider a complete
system of relativistic magnetohydrodynamic equations and Maxwell
equations, in which both the electric and magnetic fields appear si-
multaneously. In the general relativistic case, the Alfven and mag-
netosonic waves are not separate.

Let us consider the Maxwell equations with relativistic current
on the right side [2-4]:
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Here it is assumed that there are no free charges, and thate =
=p=1,

The Maxwell equations in the form (1) are not suitable for lin-
earizing the magnetohydrodynamic equations. Therefore, we rewrite
equations (1) in a form similar ro that of the equations of skin-effect
theory in electrodynamics. Applying the operation to both parts of the
first and third equations in system (1), we can finally write the neces-
sary system of equations in the form
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Here Ty, is the electromagnetic field tensor, ¥y is the mag-
netic viscosity of the medium, w is the thermal function for one par-
ticle, and n is the number of particies per unit volume,

System (2) together with the equation of state forms a closed
system. Note that not all the equations in system (2) are independent,
since the components rot H and rot E are linked by the relations div
rot H= 0 and divrot E= 0,

For the linearized problem in the case of a still medium (v =
= 0), system (2) takes the form
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(since joule losses can be ignored for small perturbations), € is the in~
ternal energy density per unit volume, and ¥ is the adiabatic expo-
nent.

We shall represent small perturbations of velocity, density, and
electric and magnetic field components in the form of a super-position
of traveling waves
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where 6n°(k), 8v°%k), etc. are given at the initial time. Then from
from the third equation of system (3) we have
hg?lt =0 (5)

Therefore, we can choose the coordinate system in which the
magnetic field perturbation components and the wave vector have the
form hg®(0, hy®, h,), kg = (k. 0, 0). :

In the chosen system, proceeding from the fourth of equations
(3), we have
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The e} component remains arbitrary. Substituting (4) into (3)
and allowing for conditions (5) and (6), we obtain the homogeneous
system
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for the Fourier amplitudes 8v,°, évy‘ and év,°.
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The amplitudes e,”, hy’, hp" are related to sv,°, svy" 6v," by
the formulas .
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The following notation has been introduced (7) and (8):
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Here Q is the dimensionless frequency and 8 the dimensionless
magnetic viscosity. The requirement that there exist a nontriviat so-
lution to system (7) leads to a tenth-degree dispersion equation in
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Here, the coefficients a;, 4y, ..., @y are functions of the elect.
tric and magnetic field strengths and of a? and 8", For infinite con-
ductivity, as might be expected, the dispersion equation (9) reduces to
the two expressions*
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These equations describe Alfv’en and magnetosonic waves, For
B « 1, these waves are approximately separate and the phase veloci-
ties have the form:

for Alfvén waves
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for magnetosonic waves
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Consider the case of low conductivity (8 > 1). The solution of
dispersion equation (9) is sought in the form
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*Equations (10) are a particular case of the more general dis-
persion equations for a moving medium [3].

Here by, ..., b5, ¢ ..., cgare functions of E, H, a?. For one of
the roots of equation (13) (R4 = 0) we have the wave
w__ i He
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which rapidly attenuates with time. The remaining six roots are found
from the solution of the equation
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Here
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Waves described by this equation will also have the form

Q=P —B‘— Q (15b)
where P and Q depend upon the value of the roots of equation (15)
and the magnitudes of the electric and magnetic field strengths. From
these waves we must select only those that attenuate with time, For
the limit case under consideration 8 > 1, separation of the waves into
Alfvén and magnetosonic waves makes no sense.

It is of interest to consider the trivial solution to system (7) when
initially &v, *= éuy’ = §v,° = 0, For the electric and magnetic field
perturbations to be finite, it is necessary to set

Q-+ F(1—0)=0. (16)

It is clear that (16) describes the ordinary skin absorption of

electromagnetic waves with frequency

Q=—i/B for B<CH, Q=+41—14i/8 for B>>1.

If we set 8 ~» = in equation (16), we have @ — +1, which cor-
responds to electromagnetic wave propagation in a dielectric with
e=p=1.

In the general case € and y are neither. equal to unity nor con-
stant with time, and the wave propagation velocity must be given by
o/k=c/ Vep.

In conclusion, the author thanks K. P. Stanyukovich for his in-
terest in the work.
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